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In  this paper we assume the existence of a nonlinear boundary layer centred on 
the critical point, and explore its effect on the development of unstable parallel 
shear flows. A velocity matching condition derived in a qualitative discussion 
suggests a growth of harmonics which differs from that predicted by previous 
theories; however, the prediction is in excellent agreement with experimental 
data. A hyperbolic-tangent velocity profile, subjected to perturbations with 
wavenumbers and frequencies close to marginal values, is then chosen as a 
mathematical model of the nonlinear development, both temporal and spatial 
instability growth being considered. 

A singularity in the analysis which has been treated in previous theories by the 
introduction of viscosity is dealt with in the present work by the introduction of 
a growth boundary layer. The asymptotics are non-uniform and the time- 
dependent solution does not resemble the steady viscous solutions, even as 
the growth rate tends to zero. The theory suggests that the instability will 
develop as a series of temporally growing spiral vortices, a description differing 
from that of a cat’s-eye pattern predicted by existing theories, but in accord with 
experimental and field observations. 

1. Introduction 
The breakdown of unstable parallel shear flows may be regarded as encom- 

passing a number of stages of behaviour. The growth of an initial small periodic 
disturbance is often followed by the development of harmonics, a change in the 
mean flow, the formation of spiral vortices, the interaction of these vortices 
coupled with the appearance of subharmonics, and eventually an irregular or 
turbulent motion. We focus attention here on the first appearance of nonlinear 
effects and assume that a strongly nonlinear region forms while the disturbance 
amplitude is still small. It is suggested that this nonlinear behaviour will play 
a central role in both the flow development and in the resultant irregular 
motion. 

Although the suggestion that the nonlinear effect in parallel flows will first 
show up in the generation of harmonic modes in the critical layer (even before 
the distortion of the mean field is noticeable) was made in 1957 by Lin,$ the 

t Present address : Applied Mathematics Division, D.S.I.R., Wellington, New Zealand. 
$ In his discussion Lin assumed a viscous boundary layer. We wish, however, to 

acknowledge his suggestion that a singularity at the critical point will be coupled with a 
rapid variation of vorticity and subsequent generation of harmonics. 
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major part of the theory developed since that time has been largely based on the 
method of Stuart (1960) and Watson (1960), in which a uniform asymptotic 
expansion is assumed to exist, with no concentrated nonlinear effects. This is 
referred to subsequently as weak nonlinear interaction theory. 

Schade (1964) has used this method to study the nonlinear development of 
slowly growing, spatially periodic perturbations to an unbounded hyperbolic- 
tangent shear layer. He introduced a viscous boundary layer at the critical point 
(also an inflexion point in this problem) in order to deal with a singularity in the 
inviscid equation, just as Drazin & Howard (1962) have done in solving the 
linear problem. 

That analysis predicts the eventual equilibration of the perturbation, with the 
fist-order vorticity distribution described by a cat’s-eye pattern. Stuart (1967) 
emphasized that the viscous boundary layer referred to above does not appear 
in this final steady state. The solution has, however, a vorticity maximum 
greater than that of the initial flow, which is in contradiction with the inviscid 
equations of motion, which state that the vorticity of each fluid particle is 
unchanged throughout the motion. 

It is suggested here that this unphysical theoretical prediction is caused by 
the neglect of nonlinear terms which become important to fist order before the 
equilibrium amplitude is attained. The growth rate c, = r l ( l  -a:) and the 
equilibrium amplitude A, = 34/4( 1 -a:)+ of the weak nonlinear theory do not 
satisfy the condition A < c5, derived in 5 4.3 below, which must be satisfied if the 
nonlinear terms may be neglected to first order near the critical point. These terms 
have been taken into account, and a strongly nonlinear region introduced, by 
Benney & Bergeron (1969) and Davis (1969), when considering a new class of 
steady waves in parallel flows. Again the predicted vorticity distributions are 
described by a cat’s-eye pattern. A viscous periodicity condition is applied and 
viscous boundary layers appear around the cat’s-eye boundaries. 

The present work also concerns the behaviour of the nonlinear region. However, 
we consider the completely inviscid development of growing perturbations. Some 
justification for the neglect of viscosity is provided by the results of the non- 
linear computations of Zabusky & Deem (1971). In  a study of the dynamical 
evolution of two-dimensional unstable shear flows they found that the qualita- 
tive results were unchanged when viscosity was neglected and concluded that the 
main effects are inviscid. 

We first present a qualitative discussion of the flow development, together with 
a comparison of predictions with experimental data. These predictions are based 
on the assumption of a strongly nonlinear region, but are otherwise model 
independent. The excellent agreement between the theory and the experiments 
indicates that such strongly nonlinear layers do occur. 

Such a system is then modelled by periodic perturbations to an unbounded 
inviscid hyperbolic-tangent shear layer, with perturbation wavelengths and 
frequencies close to the marginal values: a choice of model similar to that made 
by Schade in his development of the weak nonlinear theory. The relative simpli- 
city of this flow, for which the critical point is contiguous with an inflexion point, 
permits a theoretical development which is difficult for more general flows. 
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It is shown that the linear problem may be solved without the introduction of 
viscosity. The asymptotic expansion in the (small) growth rate is not uniform, 
as in the viscous boundary-layer theory of Drazin & Howard, but rather, a growth 
vorticity boundary layer appears centred about the critical point. Both temporal 
and spatial growth of the perturbations are considered. 

I n  this formulation of the linear problem, as well as in the subsequent treatment 
of the nonlinear problem, the integral condition which has in the past been used 
to define the unknown parameters of the problem is replaced by a velocity 
matching condition, and the sought-after solutions are required to be periodic, 
apart from possible time and space growth of the amplitude. 

It is shown that these conditions may be satisfied by an infinite number of 
steady nonlinear solutions. At this stage Benney & Bergeron and Davis chose to 
further define their steady solutions by the addition of viscosity and the satis- 
faction of the resultant periodicity conditions. We choose rather to consider 
growing solutions, and to introduce a small non-zero growth rate of the distur- 
bance amplitude. The two approaches are not compatible, even in the limit as 
the growth rate cd tends to zero, since a necessary condition for the validity of the 
present theory, a& 9 1 [equation (8.5)], is not satisfied by the theory of Benney 
& Bergeron and Davis, in which the growth rate is taken to be zero. Thus we 
ignore viscosity here even when the flow takes the form of a very tightly wrapped 
spiral; in effect we assume that the growth of the instability (although slow) is 
sufficiently rapid that the viscosity does not have time to smooth the vorticity 
into a uniform distribution, and the Batchelor-Prandtl theorem therefore does 
not apply. 

An asymptotic expansion in the growth rate is assumed in the nonlinear 
boundary layer, and a vorticity distribution is derived for which the extremum 
is the same as that of the initial flow. There is, however, a logarithmic singularity 
in the vorticity gradient along the cat’s-eye boundaries. A co-ordinate trans- 
formation is introduced to deal with this singular behaviour. It is found that the 
growth boundary layer of the linear problem has been twisted into a spiral form 
by nonlinear effects, and that the vorticity distribution is now in the form of a 
breaking wave. 

These spiral vortices, or breaking waves, which are predicted by the theory 
are found in a wide range of situations: in shear layers observed in the laboratory 
and the atmosphere, in jet flows and in the flow behind a trailing edge, for 
example. The many descriptions found in the literature follow closely that of the 
present model. 

A computer solution is used to study the predicted vorticity distributions 
and growth rates. The resultant theoretical prediction of temporal instability 
is at  first surprising, since it is generally accepted that the flow development 
is best described by reference to disturbances which are growing in space. 
Consideration of several experiments shows, however, that the results may 
in fact be interpreted in such a way as to support the present theoretical 
prediction. 

The possibility of a generalization of this model approach to the treatment of 
more general initial flow profiles is then discussed. Although the velocity matching 
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presents difficulties which have not yet been resolved, it is shown that the 
instabilities will again be expected to develop into spiral vortices. 

Finally, the effects of viscosity and the conditions for validity of the inviscid 
theory are considered. 

2. The equations and notation 

the x and y directions are 
Two-dimensional disturbances to a parallel flow are treated. The velocities in 

7J = UO(Y) + u(2, Y) (2-1) 

‘v = V(X,Y), (2.2) 

where U,(y) refers to the initial flow and u and v refer to perturbation velocities, 
all quantities being in their non-dimensional form. 

The two-dimensional vorticity equation for an incompressible fluid is 

an an an 
- + U- + V -  = Re-lV%, 
at ax ay 

where Q is the total vorticity and Re is the Reynolds number of the flow, con- 
sidered to be much greater than unity in the present paper. The viscous term will 
be largely neglected, but is included here as reference will be made t o  viscous 
effects in $8. 

The velocity components and vorticity may be expressed in terms of a non- 
dimensional stream function Y as 

u = aylay,  v = - a ~ / a X ,  (2.4), (2.5) 

n = -V2Y. (2.6) 

Since it is found convenient to work with real and complex arithmetic in 

The complex wavenumber, frequency and wave speed are 
different parts of the paper, some of the notation used is summarized below. 

01. = g + iai = ap +a’ + iai, 

w = w, + iWi = wp + w’ + iWi, 

c = w/a = c, + iCi = cp) + cf + i C i ,  

(2.7) 

(2.8) 

(2.9) 

where a$o), who) and cLo) are the values appropriate to the linear marginal solution. 
When w and ct are close to their marginal values, 

cf z (w’ - Cpa’)/ap, 

ci M (Wi - c$o’ai)/ap. 

(2.10) 

(2.11) 

Y =Yo+$, (2.12) 

The stream function is expanded as follows: 

and the perturbation stream function is written as 

$ = &&y) &r-wt) (2.13) 
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in complex arithmetic, where& is a real constant. In  real arithmetic an amplitude 
of the form 

A(x, t )  = &e-ais+wit 

is chosen and a real co-ordinate f is introduced, where 

f = arx-w,t. 

The linearized inviscid vorticity equation can then be 

The critical layer y = yc is defined by the relation 

U(yJ = c p  = u C' 

(2.14) 

(2.15) 

written as 

(2.16) 

(2.17) 

A subscript G is used to denote values of the basic velocity and its derivatives a t  
the critical layer. 

3. Qualitative discussion 
In  this section we assume the existence of a strongly nonlinear region a t  the 

critical layer and examine the effect of this first-order nonlinearity on the flow 
outside that region. 

The discussion will be limited to parallel (or quasi-parallel) flows Uo(y) which 
are predicted to be unstable by linear theory. The initial exponential growth of 
the perturbations will be as predicted by that linear theory. It is assumed that, 
at some finite, but small value of the amplitude, nonlinear effects will become 
important in some region near the critical layer and that there is then a balance 
between the vorticity advection terms in that region. With the width of this 
region denoted by 6 the terms are 

(u--c)an/ax M u;(y-y,)aa/ax = O ( m )  

and v a n p y  = o(A Q6-1). 

A balance may be achieved for 
6 = At .  

This length scale has been similarly derived by Benney & Bergeron (1969) and 
by Davis (1969) in discussion of a new class of steady nonlinear waves in parallel 
flows. 

Within this region of width A&, a redistribution of vorticity will occur. In  
order to estimate the magnitude of this redistributed vorticity we introduce a 
scaled co-ordinate Y = A-t(y - y,) and expand the vorticity of the basic parallel 
flow about the critical layer: 

Qo = - UL(y) = - UL-AhU,"Y-$AUfY2+ ... . (3.2) 

A prime denotes differentiation with respect to  y. 
I n  a simple shear layer, such as U, = tanhy, the critical layer is contiguous 
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with the inflexion point, U: = 0, and the vorticity which is redistributed by the 
strong nonlinearity has magnitude A .  Since this corresponds most closely to the 
experimental situation studied by Miksad and referred to below, we choose to 
discuss this case first and then to return to the more general case where U," =I= 0. 
The results of Miksad's experimental study permit the best available test of 
the theory. 

Solution of this problem involves matching across the nonlinear region. I n  
particular the vorticity redistribution will force a velocity jump (in the velocity 
parallel to the mean flow) of order A8 across the nonlinear region, and this 
velocity must be matched to outer solutions on each side. (In the boundary-layer 
approximation the velocity jump is given by 

where Q{ is the redistributed vorticity in the boundary layer and the integral is 
across the nonlinear region of width O(A*).) 

This velocity jump may be expanded in a Fourier series: 

co 

The term uo represents a change in the basic profile. For example, if the basic flow 
is Uo = tanh y, the matching requires a downstream development as 

tanh (y +uoA3) 

outside the nonlinear region, where the plus and minus signs refer to the two 
sides of the region. The nonlinearity therefore forces a spreading or contraction 
of the basic profile. 

The n = 1 terms demand a similar change in the fundamental, plus some 
change in phase across the nonlinear layer. The further terms represent a forcing 
of all harmonics by the nonlinear effects as A$. 

Let us now turn our attention to the more general case for which U: =+ 0. The 
redistributed vorticity then has order of magnitude A*, and this leads to a 
velocity jump and forcing of harmonics of order A .  (An order-A* boundary-layer 
vorticity is also found in the steady solutions of Benney & Bergeron (1  969) and 
Davis (1969).) 

If weak nonlinear interactions are assumed, the second harmonic and distortion 
of the mean field have magnitude A2, the third harmonic has magnitude A3, and 
so on. The observed growth rates of the harmonics thus provide a suitable criterion 
for a choice between the strong and weak nonlinear theories. Miksad (1972) has 
measured the experimental growth rates for the first five harmonics for four 
different frequencies. The measured growth rates of harmonic modes range from 
1-15 to 1-73 times that oftheir fundamental, andMiksadnotes thecloseagreement 
with the argument presented here. In  particular all harmonics of excitation 
frequency 0.222 grow almost exactly 1.5 times as fast as their fundamental. This 
excellent agreement with experiment of the predictions of the scaling argument 
presented here suggests that such a strong nonlinear region does in fact occur. 
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4. Model description 
The development of slowly growing periodic disturbances to an unbounded 

shear layer U, = U + tanh y is chosen for a model description of the nonlinear 
effects. This shear proiile has the advantage that the solution to the steady 
problem (i.e. the marginal state) is readily available, and it is thus possible to 
develop a small-growth-rate asymptotic expansion. Although it is the fastest 
growing perturbations which will be observed experimentally, the model provides 
a clear description of many features of the flow development. 

The profile has a point of inflexion a t  the origin, which is also the critical point. 
Thus inviscid instabilities are possible and the approximation of infinite Reynolds 
number will be introduced, Other flows for which the critical layer is not con- 
tiguous with an inflexion point present more difficulty, there being then a 
singularity at  the critical layer in the solution for the marginal state. 

The choice of a model involving one predominant wavelength may be justified 
by consideration of the stability of an inviscid shear layer which is periodic in 
space. It has been shown (Robinson 1974) that, subject to  several simplifying 
assumptions, the periodic part of the flow will act to damp out other non- 
resonant disturbances. As in the case of thermal convection, the initially fastest 
growing disturbance will thus tend to dominate the subsequent flow development. 
This result complements the work of Kelly (1967), in which certain resonant 
interactions are considered. 

An inviscid theory is therefore developed to follow the flow development for 
both temporal and spatial growth of periodic disturbances, first in the linear 
range (defined by the condition A* 4 1 -g), and then in the nonlinear range 
(A* 1 -a:), when a nonlinear boundary layer occurs. I n  this model, (i) the 
stream function, and thus the velocity perpendicular to the initial flow, is 
continuous across the critical layer; (ii) the integral condition which is central to 
the Stuart-Watson theory is replaced by an equivalent velocity matching condi- 
tion, and there is a discontinuity in the velocity parallel to the initial flow across 
the critical layer; (iii) a singularity introduced into the asymptotic expansion of 
the linear problem by the non-zero growth rate is treated by the introduction of a 
‘growth’ boundary layer, with no reference to viscous effects; (iv) in order to 
follow the flow development further, a nonlinear boundary layer is assumed, and 
(v) a singularity in the growing solution is treated by the introduction of a new 
co-ordinate, whence it is found that the growth boundary layer of the linear 
solution has been twisted into a spiral form by the nonlinear effects. 

4.1, A velocity matching condition 

Slowly growing inviscid perturbations to the unbounded shear layer 

U, = U+tanhy 

are considered, with the introduction of asymptotic expansions about a marginal 
solution. 
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The marginal solution for a:o) = 1 and who) = u is $(O) = sech y, which satisfies 
the linear equation 

( g  + tanh y - c )  (d2/dy2-a2) $ + 2 sech2y tanh y $ = 0. (4.1) 

The function $(y) is that introduced in (2.13); note that complex arithmetic is 
used in this section. 

I n  an asymptotic expansion of the linear problem, the next-order equation is 

If the forced equation is multiplied by $(@, the solution of the adjoint problem, 
and integrated from y = -a to y = m, the left-hand side vanishes, and the 
second term on the right-hand side gives a contribution of - 2( 1 -a2). A solution 
to this equation satisfying the necessary boundary conditions can only then exist 
provided that c + u, but the first term on the right-hand side is then singular a t  
the critical point y = 0. This singular behaviour has been dealt with for the case 
of temporal growth (a real, w complex) by the introduction of a viscous boundary 
layer a t  the origin (Drazin & Howard 1962). The same approach has been used 
by Schade (1964) to treat a similar singularity in terms forced by weak nonlinear 
interactions, with the introduction of a Landau constant. 

An alternative approach is to multiply (4.2) by $(O) and integrate from y = - a 
to y = 0- and from y = O+ to y = 00, i.e. to integrate over the range 

lim {( - m, E ]  u [ E ,  a)}. 

Since the first term on the right-hand side is antisymmetric, and qS0) is symmetric, 
this term gives a zero contribution to  the integral. 

An outer velocity jump condition, or discontinuity in the stream function, is 
thus derived in the form 

E - 4  

9 ( 0 + ) - ! 2 ( 0 - )  = 2(1-a2),  
dY dy 

(4.3) 

or equivalently 
u(O+) - u(0-) = 2 d (  1 - a2) ei(az-wt), (4.4) 

or, in real co-ordinates and with a very close to its marginal value of unity, 

u(O+) - u(0-) = - 4Aa’ cos + 4Aai sin c. (4.5) 

The notation is that outlined in 3 2. With the introduction of a viscous boundary 
layer a t  the origin, the results of Drazin & Howard and Schade are reproduced. 

This velocity-jump formulation will be used in $ 4 . 2  to determine the linear 
growth rate with the introduction of a growth boundary layer at the critical 
point, and in $ 4.3 and the appendix to consider the existence and growth rates 
of solutions having a nonlinear boundary layer near the critical point. 
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4.2. Linear stability of a shear layer 

If the perturbation vorticity is denoted by dQ’ei(ax--wt), where 

the linear equation may be written as 
sZ’ = - (d2/dy2-- c?) 4, 

f?4 
2 sech2 y tanh y 
U + tanhy- c 

Q t =  - 

which may be approximated by 

2 sech2 y tanh y $(,,) 
U + tanh y - c 

sZ ’=  - 

= 2 sech3y tanh y / (  Z7 + tanh y - c ) .  (4.7) 

Equation (4.7) may be expanded about the origin for y < 1 as follows: 

(4.8) sZ’ = 2 + 2  C- a - + o (  Y2 -).  
y-(c-U) y-(c-U) 

The non-uniformity of the asymptotics is evident here, for (4.7) and (4.8) 
predict a vorticity at  the origin of Q’(0) = 2 for ci = 0, whereas lim sZ‘(0) = 0. 

c y o  

The first term in the expansion is the value of the vorticity of the marginal 
solution at the critical point, and the second term matches with the singular 
term noted in (4.2). Equation (4.8) defines a boundary-layer vorticity distribution, 
with a boundary-layer width of order ci. The distribution of vorticity within this 
narrow layer does not affect the stream function or either velocity to first order, 
and this form is a valid approximation within the boundary layer. 

This vorticity will now be expressed in real co-ordinates in order to facilitate 
comparison with the computed profiles and with the qualitative description of 
the inviscid instability presented by Lighthill (1963). The same form is used in 
matching the growing nonlinear boundary-layer solutions with the outer 
expansion. 

sZ = Q, + Re [dQ’ ei(az-wt)] 

Both perturbation terms go to zero at  the origin, the variation occurring 
within a boundary layer of width ci. For temporal growth, c’ = 0 (see below). The 
in-phase component is then symmetric about the origin and the out-of-phase 
component is asymmetric. These symmetry properties do not apply for spatial 
growth, for which c‘ is non-zero. These qualitative features are found in the 
computed curves (Michalke 1964, 1965). The vorticity distribution agrees well 
with the schematic representation given by Lighthill (1963) in figure 11.18 of his 
discussion of the instability mechanism. 

The velocity jump to be matched with that of the external solution [equation 
(4.4)] will now be determined, and an expression for the linear growth rates will 
be obtained. 

The perturbation vorticity within the boundary layer has been expressed in 
(4.8) as the sum of two terms. The first is the value of the vorticity for the marginal 
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solution, and the velocity change due to this term will match automatically with 
the velocities of the outer marginal solution. It is the second term which defines 
the required velocity jump; thus 

u(O+) - u(0-) = - ’ dyei(ax-wt). (4.10) 

If ci is not zero this integral is non-singular, and the path of integration is along 
the real axis. The integral may be calculated in either the real or the complex 
system to give 

u(o+) - u(o-) = - 2&7ri(c - 5 f )  sgn ciei(ax-wt). (4.11) 

This velocity jump may be matched with that derived from the outer solution 

(c-17)sgnci = ( i / ~ ) ( I - a 2 ) .  (4.12) 

The formula is valid for both a and w complex. Special cases of real a (temporal 
growth) and real w (spatial growth) will now be considered. 

Temporal growth. If the wavenumber is real, the real and imaginary parts of 

(4.12) become c‘ = 0, (4.13) 

lCil = 7r-yl-a;). (4.14) 

The result of Drazin & Howard (1962) is obtained without the introduction of 
viscosity. The predicted growth rate, and the constant value of the wave speed 
agree with the computed values of Michalke (1964) for a, close to unity. It may 
be noted that the inviscid theory predicts the existence of two solutions for rxr 
less than unity, and no solution for a, greater than unity. 

Spatial growth. I n  order to  permit a direct comparison with the computed 
results of Michalke (1965), in which the basic profile was taken to be 

-my-(C-a) 

[equation (4.4)] to give an expression for the linear growth rates: 

U, = &( 1 + tanh y), 

the velocity must be scaled by a factor of 4. Equation (4.12) becomes 

(c - +) sgn ci = (i/2n) (1 - a2). (4.15) 

For small departures from the marginal state, the wave speed may be approxi- 
mated as in (2.10) and (2.11): 

c M ++m’-1a’-Lia 
2 2 i. 

With this approximation, (4.15) becomes 

(w’ - &a’ - Qiai) sgn a, = (i/n) (a’ +hi), 
which may be inverted to give 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

There are then two solutions for wr < 0 (i.e. for w < +) and none for w‘ > 0. The 
predicted variations of the real and imaginary components of the wavenumber 
near the marginal values are in agreement with the computed results, figure 2 of 
Michalke (1965). 
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4.3. Growing nonlinear solutions 
In  $ 3  it  was argued that nonlinear effects will lead to a redistribution of vorticity 
of order A within the boundary layer, for a parallel flow for which = 0, as is 
the case for the shear layer under consideration. The following analysis demon- 
strates this redistribution. The amplitude is a slowly varying function of both 
space and time, permitting consideration of both spatial and temporal growth of 
solutions. 

I n  the linear theory, the introduction of a non-zero growth rate was found 
necessary in order to derive possible solutions to the problem for frequencies and 
wavelengths not equal to the linear marginal value. This is not the case when 
a nonlinear boundary layer is assumed; a new set of steady solutions has been 
derived and is outlined in the appendix. The further development of the theory 
here follows the assumption of a non-zero growth rate, but it must be emphasized 
that this assumption is not necessary for the derivation of possible solutions to the 
nonlinear inviscid problem. 

Within the linear growth boundary layer the neglected nonlinear term 
v&4Q’)/ay is of order Ac,l(AQ’). This term is small in comparison with the 
growth term c,(AQ’) provided that ci 9 A8, and the linear approximation is then 
valid within this boundary layer. Thus the linear approximation remains valid 
so long as the width of the growth boundary layer (shown in 0 4.2 to  be 6’ = c3) 
is greater than the width of the boundary layer determined by a nonlinear 
balance (which was shown in $ 3  to be 6 = A*). For greater disturbance amplitudes, 
the growth boundary l&j’er will appear (if at all) embedded within a nonlinear 
boundary layer. 

To study the development of the flow for amplitudes greater than ct, a non- 
linear boundary layer will be introduced, and the growth term will be assumed 
small compared with the principal nonlinear terms. The linear theory of 5 4.2 
is then appropriate for slowly growing instabilities in an inviscid fluid provided 
that A < ct, and the following nonlinear theory is appropriate for A 

First a uniform asymptotic expansion about a steady solution is attempted. 
This solution suggests that the vorticity is constant to first order along the 
streamlines of the steady solution, which form a cat’s-eye pattern. There is, 
however, a singularity in the predicted vorticity gradient along the cat’s-eye 
boundary. This singular behaviour is treated by the introduction of a strained 
co-ordinate. There is then a singular asymptotic expansion as c, -+ 0, and a 
growtrh boundary layer appears, in a similar manner to the linear problem. 
The growth boundary layer, which was previously situated along the critical line 
gc = c‘, has now been distorted into a spiral shape by the nonlinear terms. 

The inviscid boundary-layer vorticity equation may be obtained by setting 
U = u+ y, v = Asin6 and Re-1 = 0 in (2.3): 

c:. 

aa aa asz 
-+(iT+y)-+Assin~- = o 
at ax aY 

or , equivalently, 
asz aa aQ 

A - t x + ( A - i ( U + c ’ ) +  Y)-+sint- ax a Y  = 0. 

(4.20) 

(4.21) 
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The scaled co-ordinate Y is defined as in 5 3, the mathematics being consider- 
ably simplified if the scaled y co-ordinate is centred on the critical point yc = c'. 

A co-ordinate transformation to 

Yp) = +YZ+ 00s 6 (4.22) 

and l i s  made [see (2.17)]. The vorticity is assumed to take the following functional 
form within the nonlinear boundary layer: 

Q = - I+AQi(Yio),LJ. (4.23) 

The solution will be required to match with the outer solution and to be 
periodic in c. I n  this co-ordinate system the matching condition (4.9) becomes 

The derivatives of the vorticity are then as follows: 

(4.25) 

(4.26) 

anpy = A* Yaa,/aY$n). (4.27) 

(Note that the partial derivatives aQ/at and aQ/ax are for constant values of y, 
and that Y then varies with both x and t . )  

It should also be noted that R, is, apart from a constant, the total vorticity 
within the nonlinear boundary layer. 

If use is made of (4.25)-(4.27) and (2.15), (2.10) and (2.11), the nonlinear 
boundary-layer vorticity equation [equation (4.2 l)] may be written as 

(4.28) 

(In this problem a$O) = 1 and wio) = c;O) = 8.) 
Since this theory is applicable for c,A-i < 1 (see the introduction to this 

section), the first term of (4.28) is larger in order of magnitude than the other 
terms. Terms which are smaller again have been neglected. 

The inner vorticity will now be expanded in an asymptotic series: 

Q, = SZp + Q p  + . . . . (4.29) 

The first-order equation is then 

Yanc,o)/at = 0, 

with solution @O) = f(yp). 
(4.30) 

(4.31) 

Yi0' is, apart from a constant, a first approximation to the stream function for 
the velocity relative to the basic flow velocity at  the critical layer, and (4.31) is 
the familiar result that vorticity is advected along streamlines in an inviscid 
fluid. The streamlines in this case define the Kelvin cat's-eye pattern. 

The second-order equation is 

raszp)/ag = - c , ~ t ( f - g ~ y ' ) ,  (4.32) 
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with solution 

C p  = - ctA-qf(Yp) JY-1df;- &f(Yy) J Y df;] + c'A-4 f1(Y$O)) + c,Adf,(Yp). 
(4.33) 

The integrals are along contours of constant Y$O). 

equation for the function f :  
The solution is required to be periodic in 6. This condition defines the following 

f(Yp) f Y-ldt = &f(YJy)  f Y d t .  (4.34) 

These integrals are from 6 = 0 to f ;  = 27r for YioJ > 1 (outside the cat's-eye 
boundary) and around one complete circuit for Yi0) < 1 (inside the cat's-eye 
boundary). 

Since 

2- f Y d t  = f Y- ld t ,  
d Y p  

the solution to (4.34) satisfying the first-order matching conditionf(Y$O)) -+ 2Yi0' 
for Yf') 9 1 is 

f(Yi0') = (4n2)-1a2(Yp), (4.35) 

where 

This function may be expressed in terms of the complete elliptic integrals K 
and E as defined in equations (17.3.1) and (17.3.2) of Abramowitz & Stegun 
(1964): 

4 x 2+(y$O) + 1)s E{2/( 1 + Tio))} for Ti'') > 1, (4.37a) 
= (4(Y~0)-l)K(l+tY$0))+SE(1+~Y~0)) for Yto) < 1. (4.37b) 

A graph of the function f (YiO)) is given in figure 1. This vorticity term is now 
everywhere of one sign, and the vorticity extremum of the disturbed flow is the 
same as that of the initial flow. 

The periodicity requirement for the next-order solution in this asymptotic 
sequence will define the functions f,(Y$O)) and f2(Yio)) in (4.33). Since AQil) has 
an amplitude dependence of A+ this periodicity condition is 

(4.38) 

Outside the cat's-eye region the definite integrals are from t = 0 to $ = 2n and 
this condition is 
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YF' 

= f(Yi0)) 

Qy) = 2 y y ;  

FIUURE 1. The boundary-layer vorticity distribution described by the function 

(solid line) ; - - -, first-order vortioity predicted by the weak nonlinear theory, 

-.-.- , approximation used in the computations. 

The double integrals in the fhst two terms (within the square brackets) involve 
powers of Y(<) and Y(") only, where 

Y = [2(YiO) - cos [)I+. (4.40) 

Since cos is symmetric about 6 = n- the area integral 

J:d5foidsf 

may be replaced by the integral 

Equation (4.35) then shows that each of these two terms is zero, and the solution 
of (4.40) isfl = cla(Yio)) andf, = c2u(Yio)), where a(YLo)) is defined in (4.37). The 
matching condition (4.25) is satisfied by this solution wit.h c1 = n-lsgn Y and 
c, = 0. 

The vorticity within the nonlinear boundary layer to this order is then 

+c 'A-klsgn Y a(Yi0)). (4.41) 
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We have here a solution which matches with the outer solution and which con- 
serves the vorticity extremum of the flow. There is, however, a logarithmic 
singularity in f’(Yi0’) at = 1, i.e. along the cat’s-eye boundary. This 
singularity is associated with stagnation points at 

Y = 0, [ =  2nn (n = 0, k l ,  _+2 ,... ), 
and may be seen in the term fY-ldf; of (4.34), noting that f; = & Y along the 
streamlines Y?i0) = 1 near the origin. The singular behaviour is to be expected on 
physical grounds as the above solution suggests a changing vorticity A(x, t )  f ( 1 )  
at the stagnation points, which is clearly not possible in an inviscid fluid. 

This singular behaviour has been treated by the introduction of a new co- 
ordinate as follows: 

Yp) = 6- h(5, E) .  (4.42) 

The co-ordinate change is, in fact, the key step of the analysis and is similar to the 
method of strained co-ordinates described by Lighthill (1949). 

The vorticity is then expressed as a function of C: and c, and the boundary-layer 
vorticity equation (4.28) becomes 

The function h may be chosen so that the bracketed term is zero: 

The solution is 
ahpE = ~ c ~ A - + Y .  

h(L $1 = w - + p c ,  
the integration being for a constant value of 6. 

Equation (4.43) then becomes 

Yani/ag = -c,A-Q, 
with solution 

SZ, = q({)exp( -c4A-4!Y-ld[). 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

When ciA4JY-%[ < 1, the exponential factor may be expanded in a Taylor 
series, and the previous solution is repeated. For large Y ,  g(6) is determined, to a 
first approximation, by the same periodicity condition [equation (4.34)] as was 
f(Yi0)). The solution satisfying the matching condition is 

q(6) = (47i-~)-~a~((g) +n-lc’A-+a(y) sgn Y .  (4.48) 

Since, in the direction of motion Y and dc have the same sign, the right-hand 
side of (4.45) is everywhere of the same sign as ci. Within the cat’s eye regions 
defined by Yio) < 1, Fy will increase around each circuit for an unstable solution 
and the streamlines, which are curves of constant 6, will have a spiral form. 

The flow into the cat’s-eye region may be calculated either by consideration of 
the growth of the region, which has area (in [, y space) 16AQ, or by consideration 
of the mass flux through the gaps AB and OD defined in figure 3. The influx is 

47 F L M  63 
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where 
joining B to C,  

is the Y co-ordinate of the point B. Since g is constant along the curve 
is defined by the equation 

Y2, = 2[h(C = 2n) -h([ = O ) ]  

w 2c,A-* sin (46) d[ .  j: 
Both expressions give an influx of 8ci A$. 

Since along curves of constant 5 the integral SY-'d[ is also everywhere 
increasing, the vorticity must be decreasing along these spirals when ci is positive. 

As has been noted, the integral in the exponential factor becomes singular near 
the stagnation points; the Taylor series expansion implicit in the previous 
solution is not valid near or inside the cat's-eye region. Because of the singular 
behaviour of this integral the vorticity (apart from a constant) is predicted by 
(4.47) to be zero at  the stagnation points, which is the value defined by the initial 
flow. The unphysical features of a new vorticity extremum and a changing 
vorticity at  stagnation points no longer appear in this solution. The vorticity 
must also be zero within the cat's-eye along the spirals of constant y which pass 
through these points. This is a physically realistic result; the initial vorticity 
distribution, which was zero along the Y axis (see §4.2), has been distorted by 
the nonlinear flow development, and the growth boundary layer with its asso- 
ciated line of zero vorticity has been wrapped into a spiral form. (These features 
are illustrated by the computed results shown in figures 2-8.) 

In  order to satisfy the velocity matching condition (4.5) and thus to determine 
the amplitude growth rates, the velocity jump defined by the redistributed 
vorticity within the boundary layer, SZ; = A(n' - 2Y?l09, must be determined. 
Since the boundary-layer vorticity is a function of the small parameters c,A-B 
and c'A-6 [see (4.9), (4.28) and (4.47)], and since the vorticity defined by 
ci A-4 + 0 and c ' A 4  = 0 is symmetric about the y axis and the effect of a non- 
zero value of c'A-8 is to introduce an asymmetric contribution while not altering 
the symmetric part of the vorticity to first order, this velocity jump may be 
expanded in asymptotic and Fourier series as follows: 

m m m 

n=O 12=0 n=O 
= A4 2 a;) cos (n[) +c,A C aQ) cos (ng) +c'A bg)  sin (nt).  

(4.49) 

As was noted in $3, the matching of the terms of order At is achieved by 
(a) a spreading or contraction of the basic flow, (b )  a similar spreading or con- 
traction of the fundamental disturbance and (c) the introduction of all higher 
harmonics to this order outside the boundary layer. These terms do not appear 
in the steady-state solutions presented in the appendix, since only a vorticity 
redistribution necessary for satisfying the velocity matching condition is intro- 
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duced there. That vorticity is of order (1 -a:) A*; a periodic unstable solution 
demands a redistribution of vorticity of order A within the boundary layer. 

The terms to be matched with the outer velocity jump given by (4.5) are 
c, AaQ) cos 6 and c’Abp) sin g. The velocity matching condition yields the relations 

cia$l) = - 4a‘, c‘bil) = 4.01 i. (4.50),  (4.51) 

where the constants ail) and b$Q are defined by the equations 

2n w 

bp)c’A-B+ ... =‘s (IR,-2Y~o))sin,$dYd[. 
7r 0 -co 

(4.53) 

These expressions relate the real and imaginary parts of the wave speed 
relative to the velocity of the basic flow at the critical point (c’, ci) to the real and 
imaginary parts of the wavenumber relative to the marginal values (a’, ai), and 
may be used to define the spatial and temporal growth rates. 

5. Computations of vorticity distributions and growth rates 
The vorticity distributions and 6 co-ordinate spirals, and the constants ail) and 

bll) which are used to determine the growth rates, have been computed. 
I n  order to do this, the function g(5) is obtained from (4.48) sufficiently far 

from the cat’s-eye region and the integral I Y - l d t  is calculated along a curve of 
constant 5, this curve in turn being defined by (4.42) and (4.45).  All the variation 
of the vorticity along such a contour is then contained in the exponential factor 
in (4 .47) .  

For 1-5 < g < 3, this function may be closely approximated by use of the 
expression 

This approximation is included in figure 1, The curve f(Y$ol) = (47r2)4a2(Y‘,O’) 
has been generated in the computations as a check on the computer program. 

Equation (4.47) suggests the following choice of co-ordinate along the 5 spirals: 

(4n2)*a2(5) z 0-26 + 2.065. (5.1) 

b = SY-ldg. (5.2) 

The incremental equations for the co-ordinates (6, Y )  along a curve of constant 5 
are then 

d< = Ydb, (5.3) 

d Y  = (sing-ic,A-&Y)db, (5.4) 

Q, = g(5) exp ( -  c,A-tb). (5.5) 

and the vorticity equation is 

Contours of the co-ordinate 5 for c,A-& = 0.4 and c,A-* = 0.1 are shown in 
figure 2. The spiral structure is evident. Since the spiral is very tight for 
small values of c,A-4, this was taken to be 0.4 in the subsequent qualitative 
computations. 

47-2 
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FIGURE 3. Contours of constant y which pass through the stagnation points (ciA-i = 0.4, 
dA-* = 0 ) .  --- , cat’s-eye boundary, Yr)  = 1. The vorticity a‘ is zero along the 
constant-5 curve inside this cat’s-eye boundary. The arrows indicate the direction of inflow 
of fluid. 

The wrapped-up growth boundary-layer axis, along which the vorticity is 
zero, is shown in figure 3, together with the constant-5 contours which approach 
the stagnation points from outside the cat’s-eye regions. The arrows show the 
direction of wrapping up of the wave. 

The boundary-layer behaviour is illustrated in figure 4, which shows vorticity 
profiles for constant 5 across a stagnation point, and in figure 5, which shows a 
vorticity profile across the centre of the spiral, the vorticity going to zero when- 
ever this cross-section is cut by the spiral of figure 3. 

Contours of constant Qi are illustrated in figure 6, showing the breaking-wave 
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/ 

I 

YB 
FIGURE 4. Vorticity distributions plotted versus 'Pa for 6 = 2n7r (n = 0, 5 1, f 2, ...). 

(a) ctA-4 = 0.4. ( b )  c,A-& = 0.1. Curve (c) is the vorticity defined by (2.36). 

form of the solution. This breaking-wave form is further illustrated in figures 7 
and 8. Since vorticity is convected with the fluid particles in an inviscid fluid, the 
curves show the predicted displacement of the fluid and these figures may be 
compared directly with photographs and figures found in the literature. 

Figure 7 illustrates a stage in the development of a spatially periodic wave, 
and may be compared (for example) with the sketches of Ottersen (1969) and 
Woods (1969), with photographs of experiments on the stability of stratified 
shear flows (Thorpe 1969) and with photographs of similar waves in the atmo- 
sphere (Scorer 1969a; Woods 1969). 

The total vorticity within the boundary layer is - 1 +A&&. Therefore, as 
A increases, the contour for a constant value of the vorticity will be described by 
decreasing values of Q,. The three contours of figure 6 then describe qualitatively 
the development of a breaking wave. (The description is qualitative only since, 
as A increases, the length scale in the y direction must increase, and since these 
curves are for a constant value of ci A d  and not for constant ci.) 

The contours have been connected in figure 8 to illustrate the behaviour of 
disturbances which grow rn they move with the mean flow, such disturbances 
being initiated at some point in space. Examples of similar flow patterns are 
found in the sketches of Scorer (1969a, a) and Thorpe (1969) and in photographs 
of experiments on transition in a separated shear layer (Miksad 1972; Freymuth 
1966), on orderly structure in jet turbulence (Crow & Champagne 1971) and on 
the instability of a two-dimensional wake (Mattingly & Criminale 1972). 
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I 1 , I  
0.01 I 1 1 

1 2 

Y 
FIGURE 5. Vorticity distribution plotted versus Y for = (2nf 1) n. -, c,A-t  = 0.4; 

--- , vorticity defined by (4.36). 

FIGURE 6. Contours of constant vorticity for c,A-* = 0.4, c’A-) = 0. 
(a) 51, = 1. (b)  = 0.1. (c) Qi = 0.01. 
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FIGURE 7. Sketch of a spatially periodic breaking wave. The curve is a 
constant-vorticity contour, sli = 0.1 for cia-* = 0.4. 

FIGURE 8. The stages in the development of billows, a wave pattern sometimes leading 
to cloud formation at wave crests in the atmosphere. Adapted from figure 6. 

It is seen that the model predicts a flow development which is strikingly similar 
to that observed in a wide variety of situations. 

The final flow pattern will be determined largely by factors neglected here, 
such as density stratification. Por example, it has been observed in different 
situations that either further instabilities appear along the edge of the spiral, or 
subharmonics are generated, followed by a transition to turbulence, or there is an 
evolution to a cat's-eye pattern. 

In  order to determine the temporal and spatial growth rates by a matching of 
velocities across the nonlinear region, the area integrals of (4.52) and (4.53) were 
computed. The occurrence of a growth boundary layer about the spiral set in the 
nonlinear boundary layer placed limitations on the accuracy which could be 
achieved. However, checks have indicated that the results presented below are 
accurate to within about 10 yo. 

The change of co-ordinates for the area integrals is most simply carried out in 
two stages, by a first transformation to co-ordinates (Q [) followed by a second 
transformation to co-ordinates (Qb) .  Since the solution, apart from a term in 
g(c) ,  is symmetric about Y = 0, the equations may be written as 

The area integrations have been determined by integrating with respect to  
b along curves of constant c and then integrating with respect to c. 

In  (5.7) the minus sign is appropriate along those curves which originate in the 
upper half-plane (Y > 0) and the positive sign applies for those curves which 
originate in the lower half-plane. 
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Area integral 

FICXIRE 9. Graph of integrals for determining a',) and b:). The slope of curve (a) defines 
-nu!); -nb$u is defined in two different developments of the theory by (i) the intercept 
of curve (b)  and the vertical axis and (ii) the slope of curve (c). Both give a zero value. 

Along curves of constant the incremental relation for the function ahlac is 

d(ah/ag) = &ciA-*(l - ah/ac) db, 

1 - ah/ag = exp ( - &ciA-3b). 

(5 .8 )  

(5.9) 

which may be solved to give 

The computed values of the constants ail) and bil) which appear in (5.6) and 

ail) = 1-34, bi1) = 0 (&lo), (5.11) (5.7) are 

(-nail-) is the slope of curve (a) in figure 9; bp)  is the ordinate of curve (b)  at 
c,A-4 = 0 ;  see equations (5.6) and (5.7)). 

The zero value for bil was also found in an earlier version of the theory in which 
the co-ordinate Y mas centred on the origin rather than on the critical point. In  
that treatment it was found that, for a fixed value of ci, there was no dependence 
of the velocity jump on c' as is seen from curve (c) in figure 9. The implications of 
this result are that the spatial growth rate is zero and therefore that each vortex 
will grow in time as a separate entity as it is advected with the basic flow. 

In  view of the present rather general acceptance of spatial rather than temporal 
growth this result may seem at first somewhat surppising. I n  § 6, therefore, we 
look again at the results of several experiments which have previously been 
interpreted as favouring spatial growth, and find that these results are in accord 
with the model prediction of temporal growth of finite amplitude vortices. 
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The temporal growth rate predicted by the nonlinear theory is 

~i = - 3.0d ,  (5.12) 

which may be compared with the linear value of 

(5.13) 

both results being for a' < 1, i.e. for wavenumbers close to the marginal value. 
Since this small-growth-rate theory predicts the slope of the c( ws. a, curve 

only for values near the marginal value of unity, no information is gained on 
the possible change in the growth rate of more unstable disturbances following 
the appearance of nonlinear effects. The experimental data indicate that the 
exponential growth rate is initially unchanged by the formation of the vortices. 

6. Temporal growth of vortices: experimental evidence 
The theory developed above suggests that each vortex, once formed, will grow 

in time as an individual entity, and that the development of the flow will then be 
well described by a temporal instability theory. The model does not apply to the 
first, very small amplitude growth, which preoedes the nonlinear effects, Since 
it has been suggested in the literature that the exponential growth is best 
described by the spatial instability theory, the results of several experimental 
studies are briefly considered here, and it is argued that these results may be 
interpreted in such a way as to support the above conjecture. 

The experimental results of Freymuth (1966) have been compared to the 
computations of Michalke (1965) and Preymuth (1966) and both authors con- 
clude that only a spatial theory could describe the instability of a separated 
(shear) layer. A graph of growth rates vs. Strouhal number from these papers 
(figure 20 of Michalke; figure 35 of Freymuth) is presented in figure 10. It is seen 
that a good fit is obtained with the spatial theory for Strouhal numbers 
S = f6,lU0 < 0.01, and a good fit with the temporal theory for 0.01 < 8 < 0025.  
The graphs of wavenumber ws. Strouhal number (figure 17 of Michalke; figure 23 
of Freymuth) and phase velocity vs. Strouhal number (figure 18 of Michalke) show 
a similar dependence; the data are well fitted by the spatial theory for S less than 
about 0.017, and by the temporal theory for larger values of the Strouhal number. 
The maximum experimental growth rates are for values of the Strouhal number 
between 0.01 1 and 0.025. 

The interpretation of these data which we wish to suggest is that the growing 
instabilities are, in the fully linear range, well described by the spatial theory, 
which is thus appropriate for small growth rates; for larger growth rates the non- 
linear effects appear sooner, individual vortices are formed, and the temporal 
theory is appropriate. 

This Viewpoint is largely supported both by the graphs referred to above, and 
by the amplitude distributions of figures 30 and 31 of Freymuth. Whereas the 
measured amplitude distribution for 8 = 0.008 is very close to that for the spatial 
case, for X = 0.017 a third maximum has appeared in the measured distribution, 
qualitatively in agreement with the temporal case; in fact, the measured distribu- 
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FIGURE 10. Spatial growth rates measured in the free boundary layer of an axisymmetric 
jet (circles) and a plane jet (squares) compared with those of the spatial theory (solid line) 
and the temporal theory (dashed line) ; after Freymuth. 

tion is about midway between that for the spatial and temporal cases. The 
measured distribution of figure 7 of Freymuth is closer again to the temporal 
case, with three maxima and with the amplitude no longer going to zero a t  the 
smallest minimum. These data, then, support the view that a transition from 
spatial to temporal instability occurs if the Strouhal number is increased, and this 
transition is interpreted here as following the appearance of nonlinear effects and 
the formation of eddies or vortices. 

It may be noted that Miksad has shown that a loudspeaker in the position used 
by Freymuth will excite antisymmetic modes which are similar to those pre- 
dicted for spatial growth, and that this will inhibit somewhat the appearance of 
the symmetric modes described by the temporal instability theory. 

Further support for the present conjecture is provided by Miksad’s emphasis 
on the influence and importance of local mean conditions on the nonlinear 
behaviour of the transition, since according t o  the model each vortex is growing 
in time as a separate and localized entity rather than as part of a spatially unstable 
system. 

Mattingly & Criminale (1972) concluded that the stability analysis for an 
incompressible two-dimensional wake must be done solely from the spatial view- 
point. This conclusion is based on the qualitative differences between the pre- 
dictions of the two theories in the near wake, before any nonlinear effects occur, 
and the better fit to those data by the spatial theory. Further downstream either 
theory can be used to describe the data. The experimental results do not, there- 
fore, conflict with the viewpoint expressed here, that the growth will be described 
by a temporal instability mode following the appearance of nonlinear effects. 
Figure 1 of that paper, wake flow patterns visualized using the hydrogen-bubble 
technique, provides an excellent illustration of the formation of eddies in the 
manner described in the present paper, and may be compared with figures 6-8. 

I n  a paper on orderly structure in jet turbulence, Crow & Champagne (1971) 
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have suggested that their data point unambiguously to the temporal instability 
theory. Michalke (1971) has, however, shown that allowance for the shear-layer 
width brings the spatial theory into agreement with experiment, and no positive 
criterion for choice between the two theories, of spatial or temporal instability 
growth, is provided. 

We have considered here the agreement between the linear theory and several 
experiments in order to demonstrate that the linear theory does not provide an 
unambiguous choice between the models of spatial and temporal growth. Once, 
however, the nonlinear effects become important, and we suggest that this 
occurs quite early on in the flow development, the linear theory is in any case not 
appropriate, and a flow description cannot be based on that theory. The sug- 
gestion of the present theory that the nonlinear development is best described 
by temporally growing disturbances is supported by the results of the computa- 
tions of Zabusky & Deem (1971). They found that the long time, fully nonlinear 
features of their calculations of temporally amplified disturbances to two- 
dimensional shear flows were in excellent qualitative agreement with experiment. 

7. Application of the theory to other flows 
In  the theoretical approach developed above for the nonlinear instability of 

a simple shear layer, the outer stream function, and thus the velocity perpendi- 
cular to the basic flow, is continuous across the nonlinear boundary-layer region. 
The asymptotic solution has an exterior velocity jump, or change in the slope of 
the exterior stream function, which is matched with an interior velocity jump 
caused by the redistribution of vorticity within a nonlinear boundary layer. This 
interior vorticity distortion is defined by the requirement that the sought-after 
solution be slowly varying and, apart from that slow variation, periodic in the 
direction of flow of the basic velocity profile. 

The theory provides a framework for the treatment of the nonlinear instability 
of other flows for which the inflexion points are contiguous with critical points. 
The distribution of vorticity within the nonlinear boundary layers centred on 
those inflexion points will be similar to that derived in the preceding section, and 
thus the growth rates can be determined by matching the computed velocity 
jumps with the velocity jumps derived from the exterior solutions. 

A few initial steps indicate that it may also be possible to generalize this 
formalism to problems in which the critical point is not contiguous with an 
inflexion point, although the singularity in the solution of the marginal linear 
problem introduces greater complications. In  this general approach the stream 
function is again matched across the boundary layer, and the discontinuity in 
the stream-function derivative is then matched with the velocity jump across 
the boundary-layer region. The form of the boundary-layer vorticity is determined 
below, in a formalism paralleling that for the shear layer. Further work con- 
sidering the velocity matching condition is continuing. 

The stream function for the velocity relative to the basic flow velocity at  the 
critical layer is 

AYp = A (f 77’ Y2 + q5p cos t). (7.1) 
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The exterior vorticity, which is the sum of the vorticity of the basic flow and that 
of the perturbation (determined to this order by the linear equation (2.16)), is 

= U: + A4 tJ:( 2Y!l0)/ UL)* + . . . . (7.2) 

In  the following U: and $io) will be scaled to unity. 
The redistributed vorticity, which is now of order A*, will be written as 

ABQZ,(Y$O), E ) .  In the notation of the previous section, the first two terms of the 
asymptotic expansion of the inner vorticity are 

QfJ) = $(yp'), (7.3) 

+c'A-*$l(YfJ') +CiA-&f2(Yy), (7.4) 

QL1) = - ~ c , A - ) ( ~ ( Y ~ ~ ' ) S Y - ~ ~ ~ - ~ ' ( Y ~ ~ ' ) ~ Y ~ ~ )  

which are similar to (4.31) and (4.33). This analysis in fact follows quite closely 
the analysis for the instability of the hyperbolic-tangent velocity profile. The 
periodicity condition defines the following equation for the function f(Yi0)) : 

f(Yi0))fY-ldE = ,f'(Y$O))QYdg. (7.5) 

$ ( Y $ O ) )  = (24-1 u:u(Yp), (7.6) 

The solution of this equation which satisfies the matching conditions is 

where u(Y$O') is defined by (4.36) and (4.37). 
As was noted previously, this function has a singular derivative at Yi0) = 1, 

which is associated with the unphysical model prediction of a changing vorticity 
at  the stagnation points. 

The analysis may be continued as before, with the introduction of a new 
co-ordinate 

(7.7) 

= Yi0) + h. The solution is 

Q, = ~ ( 5 )  exp ( - & C ~ A - & / Y - ~ ~ [ ) ,  

where 7L is again defined by (4.45). 
When c,A+JY-ldC is small the exponential factor may be expanded in a 

Taylor series, and the solution derived above is repeated. The solution will take 
a spiral form similar to that described in the hyperbolic-tangent shear-layer 
analysis; note the agreement of the predicted spiral vortex form with the pattern 
in a two-dimensional wake observed by Mattingly & Criminale (1972). 

The following velocity jump is suggested by this redistribution of vorticity, 
taking into account the asymmetry about the critical point of the vorticity of 
the basic flow. 

m m m 

u(O+) - u(O-) = A I; bg) sin (nt) + ~4 A* I; t$) sin (nt) + c ' A ~  C u:) cos (nt;). 
n=O ?&=O n=O 

(7.8) 
Harmonics are now forced to order A outside the boundary layer. 

The matching of this velocity jump with outer terms is not straightforward, 
and further work considering this velocity matching is continuing. The incom- 
plete analysis of this section does, however, indicate that unstable perturbations 
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to shear flows, including those for which the instability mechanism is dependent 
on the presence of a rigid boundary, will be expected to develop into spiral 
vortices centred on the critical layer. 

8. Viscous effects and conditions for validity of the inviscid theory 
The theory presented in this paper has been developed for two-dimensional 

flow of an inviscid fluid. I n  this section the effect of a small viscosity on the flow 
will be briefly considered. 

Away from rigid boundaries viscosity will act to diffuse any variations in the 
vorticity. The time scale for diffusion can be obtained from a balance between the 
terms aQ/at and Re-lV2Q of the vorticity equation (2.3). In  the dimensionless 
units used here the scale is then 

where 6 is the smallest length scale of the vorticity distribution. If the time scale 
for inviscid changes is less than this, the inviscid theory provides a valid first- 
order description of that change. 

Equivalent criteria for the validity of the inviscid theory can be obtained from 
a comparison of the length scales for viscous and inviscid variations, and from a 
direct comparison of the relevant terms. 

The basic velocity profile is itself time dependent. Since the smallest length 
scale is 6, = 1, the time scale for this variation is 

r = Rea2, (8.1) 

71 = Re. (8.2) 

When the Reynolds number is large, this time scale is large, and the viscous 
diffusion term may be neglected in a first-order approximation. The quasi-static 
assumption implicit in the treatment of general steady two-dimensional flows is 
then a valid one. This time scale is also appropriate for the flow changes in the 
steady solutions discussed by Stuart (1967), which did not involve any boundary- 
layer behaviour. It may be noted that, since that solution has a vorticity 
extremum greater in order of magnitude than that of the initial flow, it cannot 
have evolved from the initial flow under the influence of an infinitesimal 
perturbation. 

The time-dependent solutions discussed in this paper, both the linear solution 
of 0 4.2 and the nonlinear solution of $4.3, involve a boundary layer of width ci. 
The time scale for viscous diffusion in these flows is thus 

r2 = Rec:. (8.3) 

rs = (arci)-l. (8.4) 

The time scale for inviscid changes in these solutions is 

A two-time analysis may be introduced at this point, and the effect of the 
viscosity in altering the flow is negligible to first order provided that 

73 < 7 2 ,  (8.5a) 

that is, a,Rec: 9 1. (8 .5b)  
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This condition may also be obtained from the requirement that the viscous 
boundary-layer width (a,Re)-* (Lin 1955, p. 39) be less than the growth 
boundary-layer width ci, or from a direct comparison of the terms aQ/i?t and 
Re-IVZQ in the growth boundary layer. 

The time-dependent solutions derived in this paper are valid provided that the 
condition (8 .5b )  is satisfied. This condition is not compatible with the zero 
growth rate assumed in the theory developed by Benney & Bergeron and Davis, 
and the spiral vortex structure outlined above does not tend to the cat’s-eye 
structure of the other theory as the growth rate tends to zero. The Batchelor- 
Prandtl theorem, which states that, given suficient time, an arbitrarily small 
viscosity will produce a uniform distribution of vorticity for flows with closed 
streamlines, does not apply to the present theory, simply because we do not wait 
that long, but choose to consider sufficiently rapidly growing disturbances 
(inequality ( 8 . 5 ~ ) ) .  To repeat, since this is an important point, the ordering of the 
nonlinear analysis of 9 4.3 is 

(n,Re)-+ < ci -g At < 1, 

and the ordering of Benney & Bergeron and Davis is 

o = ci < (a,Re)-+ < A* < I .  

The non-uniformity of the asymptotic expansion as ci +- 0 has also been noted in 
§ 4.2 for the linear problem. 

The steady solutions derived in the appendix involve a boundary layer of 
width A t .  The time scale for viscous diffusion of these solutions is then 

r4 = ReA. (8.6) 

Again, those of these sohtions which involve a vorticity extremum with an 
amplitude greater than that of the initial flow cannot have evolved from that 
profile. 

The condition which must be satisfied in order that viscosity may properly 
be ignored in the derivation of such a steady solution may be obtained either by 
comparison of the boundary-layer length scales involved, At and (a,Re)b, or by 
direct comparison of the terms 

( U -  V,) aa/ax = o(a,A+Q) and Re-lV2Q = o(Re-1A-lQ) 

in the nonlinear boundary layer. This condition, which is a,ReAB 
noted by Benney & Bergeron (1969) and by Davis (1969). 

1, has been 

9. Concluding remarks 
A description of the nonlinear development of instabilities in parallel flows has 

been formulated with the aid of a model which treats slowly growing instabilities 
to a free inviscid shear layer. It is suggested that nonlinear terms become im- 
portant in a region about the critical point while the disturbance amplitude is 
still small. The instability then develops as temporally growing spiral vortices 
centred on the critical layer, accompanied by the appearance of all higher 
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harmonics outside the nonlinear region, and a spreading of the basic flow profile. 
The subsequent equilibration of the fundamental may be due to the stability of 
that mode in the altered basic flow, with no further recourse to other nonlinear 
effects. 

This description is supported most decisively by the harmonic growth rates 
reported by Miksad for stability of a free shear layer and by the close agreement 
between the model description of the developing spiral structure and a large 
number of observations both in the laboratory and in the atmosphere. The 
relations between the growth rates of the harmonics and that of the fundamental 
agree with the predictions of the nonlinear boundary-layer theory, and not the 
quite different predictions of a weak nonlinear interaction theory. The observed 
spiral, or breaking-wave flow development agrees closely with the model descrip- 
tion, and not with the closed cat's-eye pattern suggested by other theories. 

It is concluded from the general agreement of the theoretical description with 
this body of experimental information that the nonlinear layer must be taken 
into account in any study of the further development of the flow, as it most 
probably will play a dominant role in that development. An example of this is 
the often-observed phenomenon of interaction between two such vortices in- 
volving the mutual slipping of vortex pairs, which may possibly be the mechanism 
responsible for generation of subharmonic modes. 

The writer is indebted to Dr R. A. Wooding for several useful discussions. The 
computations were carried out on the Varian 6203' of the Physics and Engineering 
Laboratory, and on the Elliott 503 of the Applied Mathematics Division. 

Appendix. A new class of steady nonlinear inviscid solutions 
The analysis is similar to that of 3 4.3, with the growth rate ci set equal to zero, 

and will not be repeated here. Equation (4.29) then defines a first-order redistri- 
buted vorticity of the form 

where "Lo) is defined in (4.23) and F is an arbitrary continuous function. 

!2;, = F(Y?io)), (A 1) 

The velocity matching condition for a steady solution is 

!a P(Yi0)) = 4Acc'cosC. (A 2) 
-a 

The problem is then reduced to  that of finding continuous solutions P(Yio)) 
to this equation. This problem has been treated by Climescu (1970) using Fourier 
transforms and by the author (1970), by use of an Abel equation approach. It is 
shown that an infinite set of such solutions exists, and thus a new set of steady 
solutions to the nonlinear equation has been derived. In  those papers the re- 
distributed vorticity is assumed to be symmetric about the y axis, the scaled 
co-ordinate is y/(LA)rf- and the function f is defined by 

F = 24Ah'f. (A 3) 

The redistributed vorticity is of order A&( 1 -a:). 
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Further terms in the asymptotic expansion are required to be periodic. This 
condition is automatically satisfied by the nonlinear terms forced by a vorticity 
distribution of the above form, and thus there is no further constraint on these 
solutions. 
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